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PHASE SPACE METHODS AND PATH INTEGRATION:

A MICROSCOPIC APPROACH TO DIRECT AND INVERSE WAVE PROPAGATION

Louis Fishman
Department of Civil Engineering

The Catholic University of America
Washington, D.C. 20064 USA

ABSTRACT. This project focuses on the development of new, multidimen-
sional algorithms for direct acoustic propagation and generalized acoustic
tomography at the level of the scalar Helmholtz equation. The general aim
is the continued detailed development of the ideas originally outlined sev-
eral years ago. Phase space, or "microscopic," methods and path (function-
al) integral representations provide the appropriate framework to extend
homogeneous Fourier methods to inhomogeneous environments. The path
integrals furnish the principal representation of the Helmholtz propagator
and, subsequently, through direct computation, the basis for the direct
numerical algorithms. There are two complementary approaches to the
analysis and computation of the n-dimensional Helmholtz propagator. The
first is essentially a factorization/parabolic-based (one-way) phase space
path integration/invariant imbedding approach. This results in a marching
algorithm which generalizes the Tappert/Hardin split-step FFT algorithm for
one-way wave propagation, a nonperturbative incorporation of backscatter
effects which generalizes Kennett's algorithm in reflection seismology for
two-way wave propagation, and the basis for the formulation and solution of
corresponding arbitrary-dimensional nonlinear inverse problems. The
numerical algorithms based on these modern, "microscopic" methods directly
compute pseudo-differential and Fourier integral operators, incorporate
phase space filtering, and are ideally suited for computers which provide
either a vector or a parallel pipe type of operation. Extensive testing
has, so far, been very promising. While the first approach starts from a
transversely inhomogeneous formulation and, subsequently, builds in
backscatter effects, the second approach constructs elliptic-based
(two-way) path integral representations of the propagator for general
range-dependent environments from the outset. A particular approximate
path integral construction (Feynman/Garrod) results in a true path
functional, suggesting the underlying stochastic foundations of the
Helmholtz equation. It appears to be a viable computational approximation
for a useful range of propagation experiments and can be numerically
evaluated by standard Monte Carlo (statistical) methods. A more detailed
examination and approximate construction of the underlying stochastic
process would provide for both more accurate and widely applicable path
integral representations and direct numerical simulation techniques.

I. INTRODUCTION. Direct wave propagation modeling plays a
significant role In such fields as underwater communication, radio
transmission through the atmosphere, laser propagation, and earthquake
prediction. Likewise, the corresponding inverse problems are at the heart
of such areas as submarine detection, CAT scan technology, soft-tissue
diffraction tomography, the mapping of the interior earth, and oil



exploration. In all of these and many other examples, relatively fast and
accurate numerical algorithms are necessary.

The analysis and fast, accurate numerical computation of the wave
equations of classical physics are often quite difficult for rapidly
changing, multidimensional environments extending over many wavelengths.
For the most part, classical, "macroscopic" methods have resulted in direct
wave field approximations (perturbation theory, ray-theory asymptotics,
modal analysis, hybrid ray-mode methods), derivations of approximate wave
equations (scaling analysis, field splitting techniques, formal operator
expansions), and discrete numerical approximations (finite differences,
finite elements, spectral methods). In the last several decades, however,
mathematicians studying linear partial differential equations have
developed, in the language of physicists, a sophisticated, "microscopic"
phase space analysis. In conjunction with the global functional integral
techniques pioneered by Wiener (Brownian motion) and Feynman (quantum
mechanics), and so successfully applied today in quantum field theory and
statistical physics, the n-dimensional classical physics propagators can be
both represented explicitly and computed directly. The phase space, or
"microscopic," methods and path (functional) integral representations
provide the appropriate framework to extend homogeneous Fourier methods to
inhomogeneous environments, in addition to suggesting the basis for the
formulation and solution of corresponding arbitrary-dimensional nonlinear
inverse problems. Moreover, it is in phase space, rather than in
configuration space, that, from a mathematical perspective, the interesting
geometry takes place.

p

II. PHASE SPACE AND PATH INTEGRAL CONSTRUCTIONS. For the
n-dimensional scalar Helmholtz equation, there are two complementary ap-
proaches to this analysis and computation, as illustrated in Figure 1. The
first is essentially a factorization/path integration/invariant Imedding
approach. For transversely inhomogeneous environments, implying medium
homogeneity with respect to a single distinguished direction, the n-
dimensional Helmholtz equation can be exactly factored into separate,
physical forward and backward, one-way wave equations, following from
spectral analysis (1-5]. The forward evolution (one-way) equation

(i/) x *+(x,xt) + (K2 (xt) + (1/E 2 )Vt2)1 / 2 + ( X X 
) a 01

where K(x) is the refractive index field and k is a reference wave number,
is the f rnally exact wave equation for propagation In a transversely in-
homogeneous half-space supplemented with appropriate outgoing wave radiation
and initial-value conditions. While functions of a finite set of comuting
self-adjoint operators can be defined through spectral theory, functions of
noncomouting operators are represented by pseudo-differential operators
[2,5]. The formal wave equation (1) is now written explicitly as a Weyl
pseudo-differential equation In the form

(t a (xx ) + (E/20)n- f dxtdpt
Ren-2

_+ 1j)12) exp(itpt.(xt -X)#+(XX) 0. (2)
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In Eq.(2), the sym~ol ,) associated with the square root Helmholtz oper-

ator B a (K 2() + W1E )V q) 1/2 satisfies the Weyl composition equation

%Z2(p ) . K2 11 - !2 (E /,)2n-2  dtdxdz %(t+R. x+)

fR4n-4

• B(ep+p, z+q) exp(2i(x.k _- tyz)) (3)

with %2(pq) the symbol associated with the square of B, B
2

1121q1 + (I/2 )V 2) [2,3,5). The generalized Fourier construction procedure
q

for the square ro6t Helmholtz operator can be summarized pictorially by the
following correspondence diagram

B 2 *= !) %2

B () b

where the arrows symbolize the one- and two-way mappings between the appro-
priate quantities.

Exact solutions of the Weyl composition equation (3) can be constructed
in several cases [6]. For example, the symbol %(p,q) for the two-dimen-

sional (n - 2) quadratic medium, K2 (q) K 2 + w2 q2 , is given by [6]

08(p,q) - -(exp(iw/4) 1 1/2/W1/2 dt expltlYt + Xtanhtll

St"1/2 (Ysecht + iXsech 3t - (secht)(tanht)) (4)

with X • (/)(w2q2 - p2), Y - K 2* , and .- w/k. Consistent with taking

the square root of the indefinite Helmholtz operator, the corresponding
symbols, generally, have both real and imaginary parts characterized by
oscillatory behavior (4,6], as illustrated in Figure 2. Nonuniform and
uniform perturbation solutions corresponding to definite physical limits
(frequency, propagation angle, field strength, field gradient) recover
several known approximate wave theories (ordinary parabolic, range-
refraction parabolic, Grandvuillemin-extended parabolic, half-space Born,
Thomson-Chapman, rational linear) and systematically lead to several new
full-wave, wide-angle approximations [2-4,6].

The exact pseudo-differential evolution equation (2) and, in general,
the wide-angle extended parabolic approximate equations derived from the
ana'ysis of the composition equation [2-4,6] are singular integro-
differential wave equations. Solution representations for such pseudo-
differential equations can be directly expressed in terms of infinite-
dimensional functional, or path, integrals (7,8], following from the Markov
property of the propagator. In an operator notation, then,

4



N
exp(ikBx) l irm I- exp(tikhx.) (5)

N-->- j.1

where Axj - x/N, symbolically representing the propagator in terms of the

infinitesimal propagator. As the operator symbol is not simply quadratic in
p, the configuration space Feynman path integral formulation is not appro-
priate, necessitating the more general phase space construction [4,7]. This
results in a parabolic-based (one-way) Hamiltonian phase space path integral
representation of the propagator in the form [3,7]

N-i N
G (xx iO,xt) - lim T dx.t (R/2 )1d t- N-->- (j=1 -jt j=1

N
•exp(ik 3II (_it-(xt - xjIt) + (x/N) H(pjt x.t x.it (6)

where

/ (z ) "' zmI I I I I I I I

4

3

2
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Fig. 2. The real (-1 and imaginary (--..) parts of the n : 2
quadritic mvedium symbol as a function of X for " = 1.
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Hlp_,4'*,q') - (E/201n-l /dsdt F(lq'-_q.s)

JTR2n-2

"he(p,(q"+q' )/2) - t) exp(is.t). (7)

In Eq.(7), F(u,v) and h (p,_q) are related to the operator symbol OB(p,q) by

%B(u,v) - Nu hB (U,V) (8)

where B and iB are the corresponding Fourier transforms [2,3,7).BheB

The nonuniqueness of the lattice-approximation path integral represen-
tation is readily understood in terms of different discretizations, or quad-
ratures, of the symbolic functional integral and corresponds to the repre-
sentation of a given (fixed) operator by different operator-ordering, or
pseudo-differential operator, schemes [2,3,7,8). More fundamentally, in
analogy with the Schr8dinger equation for particle motion on a Riemannian
space and the thermodynamic (Fokker-Planck) equation for particle diffusion,
the algorithmic Helmholtz path integral construction reflects the stochastic
nature of the integration [4,9]. Further, both the macroscopic and micro-
scopic (infinitesimal) half-space propagators can be formally expressed as
Fourier integral operators with complex phase [4]. The phase space path
integral, thus, represents the macroscopic Fourier integral operator in
terms of the N-fold application of the microscopic, or infinitesimal,
Fourier integral operator in a manner which can be related to the global
geometrical-optics construction of the macroscopic operator [4,5).

The path integral formulation interprets the wave theory in terms of an
infinitesimal propagator summed over all phase space paths. For the Helm-
holtz theory, the exact infinitesimal propagator is not, in general, given
by the locally homogeneous medium propagator, as in the ordinary parabolic
(Schr6dinger) propagator construction [8]. The approximate extended para-
bolic wave theories then correspond to approximate infinitesimal propagators
summed over the complete phase space. In retaining the *sum over all
paths," diffraction, or full-wave, effects are incorporated.

For weakly range-dependent environments, range variability can be, at
first, accommodated at the level of range updating, as in the case of the
parabolic path integral [1,8). For reflection/transmission from a planar
interface separating two (different) transversely inhomogeneous acoustic
half-spaces, the concept of reflection and transmission amplitudes general-
izes to reflection (r) and transmission (t) operators. The reflection and
transmission operators, which, when applied to the incident wave field at
the interface, produce the initial values of the reflected and transmitted
wave fields, are defined within the Weyl pseudo-differential operator
framework and are explicitly determined by enforcing the well-known
interface continuity conditions. The main result [10] is a composition
equation of the form

-BL
(p  R(R',) u (l/,)2n-2 dtdxddz (nBL(tp, x+q) +

IR4n-4
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Oi(t+, x_q)) Gr( p, 1+_) exp(21E(x-y - t1z)) (9)

for the reflection operator symol a r(p,_) and an analogous equation for the
transmission operator symbol t (p,q). The inclusion of a planar transition

region of arbitrary length and inhomogeneity can be accomplished by factor-
ization methods in conjunction with invariant imbedding [4,11). Invariant
imbedding constructs the initial-value system for the reflection and trans-
mission operators associated with the transition region, transforming the
Helmholtz boundary-value problem into an initial-value problem. A dis-
cretized formulation [11] provides the extension of Kennett's method [4,11)
in reflection seismology. The resultant forward and backward wave fields
propagating in the transversely inhomogeneous half-spaces are represented by
the one-way path integrals, while, within the transition region, a formal
path integral representation of the propegator can be expressed as a product
integral [8]. This takes the form [4)

x
N

G exp(iH(s)ds) - lim TT exp(iEH(ss.)as) (10)
M= JN->- j=i

where sj - a + (J-1/2)asj, Asj - (x-a)/N, a denotes the transition region

boundary, H is the appropriate first-order Helmholtz equation matrix

operator (2,4), and with the product of exponential factors ordered from
right (lower J) to left (higher J) reflecting the noncommutativity of the
matrix operator H at different x. While product integration-based path

integral constructions have been applied to the problems of nonrelativistic
electron spin and the Dirac equation, such infinite products of matriL.es
are, generally, only tractable in simple limiting cases [4,8).

Rather than starting from a transversely inhomogeneous formulation and,
subsequently, building in backscatter effects, the generalization of Fourier
methods to arbitrary inhomogeneous environments and the construction of a
dynamical basis for the Helmholtz equation can proceed, in the second ap-
proach, from the construction of truly global configuration space path inte-
grals, which attempt to generalize, for example, the homogeneous half-space
result [3,7]

+ l N-1 in-i)N/2
(xxtIO,x') = lim '-TT dxjt (ixN- -Z N ->- j=1 -i

R( n - t ) (N-I) .

0( /2((n-1)N+l ((n-l Hln-)N+ll/2IEKO(n-1)N+I) 11

where

7
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S2 x2 1/2
(n-t)N+1 (N (xj - x • ) (12)

and Hi1 )(t) is the Hankel function. These elliptic-based (two-way) con-

structions, originating from the Fourier transform relationship between the
Helmholtz and Schr8dinger (parabolic) propagators, result in the approximate
Feynman/Garrod path integral [3,71

G(xlx') (12k2) (N-1 N n exp(ikSN)

lT dx. T (l 2w)d (13)
N->- R izi j=1 (1/2 - X)

Rn( 2 N-I)

where

N

SN j - (14)

corresponds to an appropriate discretized action and
N2

= (1/N) N_ (p/ 2 + V(x1 )) (15)

plays a role analogous to an average energy with the identification V(x) =

(-1/2)(K 2(x) - 1). For a transversely inhomogeneous half-space, partial
integration- of Eq.(13) in conjunction with the reflection principle (or
method of images) results in [3,7]

+ N NN-i

G+(x'Xt O',xt)= lm 1T dxjt II (E/2w) - dpjt
Nj-1 j=1

Ron-1) (2N-1)

.exp(ik(SN + 21/ 2 x(1/2 - ) 112)) (16)

with SN and Z taking on their appropriate forms in one-lower dimension.

Formally reducing both the full- and transversely inhomogeneous
half-space phase space Feyman/Garrod path integrals to configuration space
path integrals (7] establishes the path functional character of the
representation. Moreover, the approximate Feynman/Garrod path integral is
exact in the homogeneous medium limit, incorporates significant backscatter
information, and contains both the geometrical (ray) acoustic and ordinary
parabolic approximations. This configuration space formulation for the
two-way problem, initially based on a variational principle and phase space
constructions, seeks to express the propagator in terms of a phase

8



functional evaluated over an appropriate path space, as symbolically
expressed in the Feynman/DeWitt-Morette representation [3,7,9]. This takes
the form

G(xlx') = (-1122 D(M) exp(iR9(_)) (17)

E

where

0 X

1 / ldiI (1 - 2V(3)) 11 2  (18)

X"

is the analog of the action associated with a "free particle" on a space
with the metric

d12  (1 - 2V( ))II d311 2  (19)

and where E represents the space of paths from x' to x such that

112 = (I/1 ; dt ((112)11 d3(tl/dtll 2 + V(3_(tll) (20)

).4.

with the constraints

(0) = x',

x (21)

The dynamical basis of the Helmholtz equation can, thus, be viewed in terms
of a stochastic process embodying fixed "average energy" paths, or,
alternatively, in terms of "free particle" motion [3,7,9].

Ill. COMPUTATIONAL ALGORITHMS. Direct integration of the one-way
phase space path Integral provides the computational basis for the pseudo-
differential wave equation (2). Choosing the standard ordering, F(u,v) =
exp(-iEu.v/2), in Eqs. (6), (7), and (8) results in a numerically n-re
efficient-post-point marching algorithm in the form

A.J+

x+,xxtl dpt exp(ikpt-xt) (exp(ikAxhB(t,xtl) (x,t)) (22)

Rn-1

where i+ is the Fourier-transformed wave field and

hB(t,xt) = (I/,)n-1 dsdt %(s,t) exp(-21k(.Xt - -)(t - s)). (23)
fR 2n-2

9



This marching algorithm provides the generalization of the Tappert/Hardin
split-step FFT algorithm [] to the full one-way (factored Helmholtz) wave
equation. For a two-dimensional model ocean/bottom propagation environment
with a perfectly reflecting ocean surface, the Fourier transform of the wave
field in Eq.(22) is replaced by a discrete fast sine transform and the in-
verse transform is evaluated by a rectangular rule integration, enabling the
propagated wave field to be expressed in the matrix form

A+ .

+(x+Ax,z n ) = 2 AnmO (x-pm )  (24)

m

for each depth point zn. In Eq.(24), 0+ and0 + are column vectors and the

matrix A is defined by its matrix elements

Anm =Isin(EPmZn + kAxho(pm,Zn)) exp(ikaxhe(pm,Zn)) (25)

where he and hB are the even and odd parts with respect to p of hB(p,z) in

Eq.(23) and Vi is an appropriate transform normalization constant [1,4,12].

The principal idea underlying the practical implementation of the phase
space marching algorithm is the construction of a small number of approxi-
mate operator symbols, which, when taken together, allow for wave field
computations over a very wide range of model environments and propagation
parameters. In conjunction with a study of exactly soluble cases of the
Weyl composition equation [6), high-frequency, real Weyl high-frequency,
uniform high-frequency, and low-frequency approximate symbols have been con-
structed (2-4,6]. Of particular significance is the fact that the manner of
marching the radiation field is independent of the medium and any approxi-
mation to the square root Helmholtz operator, resulting in a modular code
architecture and highly versatile propagation program. Moreover, the propa-
gation models constructed and computed through the code correspond to sing-
ular integro-differential equation as well as partial differential equation
approximations to the one-way wave equation. Indeed, this numerical algo-
rithm represents one of the very few attempts to compute directly with
pseudo-differential and Fourier integral operators. For the two-dimensional
case, the range-incrementing procedure is just a sequence of matrix multi- ',
plications, and, thus, ideally suited for computers which provide either a
vector or a parallel pipe type of operation. Phase space filtering reduces
both the size of the matrix multiplication and the number of matrix elements
initially computed, in particular, reducing the total range-incrementing
computational time by almost an order of magnitude for typical model calcu-
lations (4].

Numerical results of transmission loss (dB re 1 m) as a function of
range (kin) for a number of model ocean/bottom propagation experiments
demonstrate the computational viability of the factorization-/path integra-
tion-based phase space marching algorithm [4,12]. Several propagation
experiments are summarized in Figures 3, 5, and 7, with the corresponding
transmission loss curves compared with a reference Fast Field Program (FFP)
algorithm (4,12] in Figures 4, 6, and 8.

10
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For 400 Hz propagation in the exaggerated double-well model of Figure
3, a wide-angle capability well beyond the ordinary parabolic approximation
is required. Figure 4 illustrates the excellent agreement between the high-
frequency and FFP algorithms over ranges on the order of 500 wavelengths.
Figure 6 illustrates the cumulative growth of a phase shift error at long
range which characterizes the breakdown of the high-frequency algorithm in
the 250 Hz propagation in the rapidly changing shallow-water model of Figure
5. Combining Fourier component, or wave number, filtering with the high-
frequency algorithm leads, not only to a more efficient and, thus, faster
algorithm, but also, to a more widely applicable numerical scheme. The
filtering, in addition to removing Fourier components which, in principle,
make no significant contribution to the computed wave field, eliminates
those unnecessary regions of phase space where the small error in the high-
frequency symbol approximation can lead, in a cumulative manner, to serious
discrepancies at sufficiently long ranges. This is particularly well
illustrated in the 60 degree filtered calculation on model environment 2 at
250 Hz which results in the complete elimination of the cumulative phase
shift error (Figure 6), greatly extending the effective computational range.
Sufficiently decreasing the propagation frequency and increasing the Jump
discontinuity in the sound speed, as illustrated in the 25 Hz propagation in
the shallow-water model of Figure 7, demonstrate the violation of energy
conservation inherent in the high-frequency wave theory and the now-rapid
decay with increasing range of the corresponding numerical algorithm. This
growth in the wave field, illustrated in Figure 8, is eliminated by the real
Weyl high-frequency algorithm [4], which effectively restores energy
conservation, as is also illustrated in Figure 8. A more detailed
discussion of these and other points is presented elsewhere [1,4,12].

The speed and modest storage requirements of the filtered one-way
algorithm indicate that range-dependent calculations over extended
environments should be feasible with current supercomputer technology. Both
range-updating and the numerical calculation of the reflected and
transmitted fields from an Interface should be possible over distances on

the order of 104 wavelengths. Preliminary computations with range-dependent
Munk-profile deep ocean environments, including propagation through extended
shadow regions, compare well with adiabatic normal-mode calculations.

Both the range-dependent and range-independent Feynman/Garrod path
integral representations can be computed by standard Monte Carlo (statisti-
cal sampling) methods for the numerical evaluation of multiple integrals
[4]. While numerically calculating Helmholtz wave fields as high (in
principle, infinite)-dimensional integrals is quite distinct from the more
traditional finite-difference and finite-element approaches, the Monte Carlo
evaluation of functional integrals has been successfully applied in quantum
mechanical, statistical mechanical, and quantum field theoretical
calculations [4]. For the phase space representations of Eqs. (13) and (16)
in two dimensions (n - 2), the modeling of realistic propagation experiments
can involve the computation of thousand-dimensional oscillatory integrals.
Correlated-sampling variance reduction techniques can dramatically improve
the speed and accuracy of the algorithm (4]. Generally speaking, a large
parallel processing capability should have a very favorable impact on the
numerical computation of path integrals [4).

IV. INVERSE FORMULATION. The phase space-based construction of the
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square root Helmholtz operator provides the basis for a formulation of the
inverse algorithms mentioned in the Introduction. Mathematically, the
refractive index field (or its square) is reconstructed from the full-space
Helmholtz Green's function G through the relationship

Bxx)-(2i/k) lit (a 2 G(x.xt10 x')). (26)
Btxt,xt ) O

The symbol %(p. q ) is then constructed through an inverse Fourier transform

of the kernel function B(xt,xi) and subsequently yields the refractive index

field upon a direct application of the Weyl composition equation (3) forlpl-
0. In the homogeneous medium limit, the direct evaluation of the composite

2
symbol reduces to the square of the symbol, QB2(p,_q) - Gi(pl).

The inverse algorithm proceeds around the correspondence diagram (pictorial
summary) in a counterclockwise fashion. The direct propagation algorithm
requires the inversion of Eq.(3) while the inverse propagation algorithm
only requires a direct computation of Eq.(3). Thus the direct propagation
problem has been transformed into an "inverse" problem while the wave field
inversion problem has been reformulated, in an appropriate sense, as a
direct calculation.

The factorization algorithm exactly inverts the inherently nonlinear
relationship between the wave field data and the refractive index field as
reflected in the Lippmann-Schwinger equation for the propagator [3]. Most
importantly, it is a multidimensional formulation. For the "physical
experiment," a point source is introduced into the medium defining the
initial-value (x - 0) plane. The second derivative with respect to the
range of the wave field is then determined as a function of the point source
and receiver positions. Collecting the data on the initial-value plane
would most probably limit the application of the algorithm to specific types
of bore-hole experiments. Moreover, mathematically, the inversion requires
the evaluation of singular integrals (generalized functions). Collecting
data on a downfield plane (x > 0) leads to a transmission experiment similar
to the oceanic sound speed profile inversion method of DeSanto (3]. The
downfield wave field provides for an appropriate analytic continuation in
the factorization algorithm and connects the analysis with the inverse
diffraction problem [3].

The transmission, or propagation, formulation is analogous to
tomography. The reference wave number in the factorization analysis
corresponds to 2w/(Planck's constant) as opposed to its square playing the
role of an energy. The source generation and data collection over parallel
planes then naturally correspond to the multidirectional insonifying plane
waves and subsequent angular data collection of fixed-energy (frequency)
diffraction tomography [3]. For range-dependent environments, the inclusion
of backscatter effects, even in an approximate manner, would then provide
the basis for a generalized acoustic tomography, extending the diffraction
al orithms based on the Born, Rytov, or distorted-wave Born approximations
[31. The nonlinear factorization and subsequent weak-backscatter
perturbation theory would extend the linearized weak-scattering treatments
into the nonlinear regime. This can be attempted in two ways. Formal field
splitting analysis provides the basis for a weak-backscatter perturbation
theory within the framework of invariant imbedding [2-4). The arbitrary-
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dimensional nature of the factorization analysis in conjunction with
mathematical imbedding concepts provides the basis for a spatial-dimensional
perturbation theory [2-4]. This essentially involves treating the spatial
dimension of both the Helmholtz operator, in general, and the refractive
index field, in particular, as a variable and subsequently studying the
structure of the resulting family of systems indexed in this manner. For
the case of two (different) transversely inhomogeneous half-spaces
separated by a planar interface, an inverse algorithm can be initially based
on the composition equation (9).

For a transversely innomogeneous environment, the factorization
inversion model invites comparison with "effective one-dimensional"
stratified environmental models such as that of Stickler and Delft [4]. In
both models, the location of the field source (finite) and the data measure-
ments is within the scattering region. Most importantly, the factorization
method is a direct Inversion of an arbitrary-dimensional propagation
equation which requires less symmetry than those models (i.e.,
Stickler-Deift) reducible to the standard one-dimensional formulation of
Deift-Trubowitz (4] or Gelfand-Levltan (4]. Thus for example, in a general
n-dimensional Cartesian formulation, the refractive index field can be a
function of as many as (n-i) coordinates in the factorization model, while a
function of only one coordinate in an "effective one-dimensional" model.
The experiment envisioned and the distinguished direction differ in the two
models. In the transversely inhomogeneous environment, the direction in
which there is medium homogeneity is distinguished, while in the "effective
one-dimensional" model, the one direction in which there is medium inhomo-
geneity is, in effect, distinguished. Data, in both cases, is collected
perpendicular to the distinguished direction. The Stickler-Deift model is
essentially a one-dimensional scattering experiment with the surface data,
in effect, reflection coefficient data. Thus unlike the transmission
experiment, which extensively samples the region of inhomogeneity, in the
factorization model, the Stickler-Deift analysis does not account for the
presence of "trapped modes" (4]. The formal inclusion of a specific
pressure-release surface within the pseudo-differential operator framework
would allow for a stratified environmental model and the subsequent
quantitative comparison with the Stickler-Deift model.

For applied inverse problems, approximate inversions may prove
adequate. Approximate inversion algorithms follow readily from the pertur-

bative treatments of the Weyl composition equation. K2(_q) is related to
00.0 in a quadratic fashion and through a linear integral relationship,

respectively, in the high-frequency (k->-) and weak-inhomogeneity (Born)
limits. In particular, the high-frequency algorithm is based upon choosing,
in practice, a ipl such that the symbol approaches its asymptotic form,

a3(p,q) (K(q) - 12 )1/2 . The approach to the asymptotic regime in phase

space is governed both by the magnitude of K (q) (large) and the
variation of the refractive index field on the wavelength scale (small).
Figure 9 illustrates the high-frequency inversion for the case of a
quadratic medium. Applying the full composition equation for the inversion
would result in a linear function in X for the real part and an imaginary
part which is identically zero. Finally, weighted Hilbert space methods for
incorporating prior estimates appear to be applicable to the Fourier-based
factorization approach [4].
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